Interleukin-2 in neoadjuvant therapy potentiates inhibitory activity of 5-fluorouracil and interferon in experimental liver metastases

Michael Lee, Alice Pierce, William Mahaffey, Susan Specht, Nancy Stemmler and Arthur Katoh 1,2

Departments of Surgery, ¹Laboratory Medicine and ²Radiology, Mercy Hospital, 1400 Locust Street, Pittsburgh, PA 15219, USA. Tel: (+1) 412 232 8137; Fax: (+1) 412 232 8134.

Our previous studies showed that interferon (IFN) used in combination with 5-fluorouracil (5-FU) was effective in inhibiting colorectal tumor cell metastases to the liver in nude mice. Furthermore, IFN was also effective in neoadjuvant therapy and allowed the combination treatment (5-FU+IFN) to be delayed for 2-3 weeks following i.s. injections of tumor cells. In this study, we have examined the potential of interleukin-2 (IL-2) to substitute for IFN in neoadjuvant therapy. IL-2 was found to be equally effective, if not superior, to IFN as a neoadjuvant in inhibiting liver and lung metastases with 5-FU+IFN. Moreover, the effect of IL-2 was demonstrable even after 1 week, whereas IFN did not have an effect until 2 weeks of neoadjuvant dosing. These studies demonstrate IL-2 to be more effective than IFN as an immunomodulatory agent in combination with 5-FU+IFN for the inhibition of liver metastases in nude mice.

Key words: Chemotherapy, interleukin-2, interferon, LoVo, metastases, neoadjuvant.

Introduction

The use of immunomodulatory agents in cancer therapy has received much attention in recent years. Two of the most frequently studied agents are the cytokines interferon (IFN)- α and interleukin-2 (IL-2). IFN- α has been used effectively as an antitumor agent in *in vivo* experiments in animal model systems, as well as in humans though restricted to certain cancers such as hairy cell leukemia and renal cell carcinoma. IFN- α has shown anti-proliferative effects on tumor cells *in vitro*³ and *in vivo*. However, exactly how IFN- α exerts its anti-tumor action is not completely understood. A broad spectrum of properties has been reported for IFN- α . These in-

This work was supported in part by grants from the Pittsburgh National Bank Charitable Trust Fund and from Roche Laboratories.

Correspondence to A Katoh

clude inhibition of tumor growth,5,6 promotion of partial reversal of the malignant phenotype, 7 enhancement of surface molecule expression, e.g. α-2 microglobulin, Fc receptors, tumor antigens and histocompatibility antigens.⁸⁻¹¹ The immunomodulatory function of IFN-α has been described as an augmentation of lymphocyte cytotoxic responses. 12 Cytotoxic natural killer (NK) cells and antibody-dependent cell-mediated cytotoxic responses have been shown to be significantly augmented by IFNs. The immunomodulatory phenomena encompasses effects on the natural immunity of the host, and include the NK cells, the lymphokine activated killer cells (LAK), T cells and macrophages. 13-15

IL-2 has also shown anti-tumor activity in animal experiments. ^{16,17} It appears to be essential for the proliferation of antigen stimulated T lymphocytes and cytotoxic T cells. ¹⁸ IL-2 has also been effective in promoting the growth of NK cells. When given in high doses to mice bearing tumors, IL-2 has mediated tumor regression by generating LAK cells and cytotoxic T lymphocytes. ^{19,20} There appears to be no evidence that IL-2 acts on non-lymphoid tumor cells. Thus it is currently presumed that IL-2 exerts its anti-tumor effects through an interaction with the immune system of the host.

Although a number of reports have described the effectiveness of IFN- α and IL-2 as single agents for the treatment of various cancers, it appears that the most useful application of these agents has been in combination, ^{21–23} and also when used with chemotherapeutic agents. ^{24,25} These cytokines have demonstrated an enhancement of the activity of cytotoxic drugs. For example, when IL-2 was used in combination with adriamycin and LAK cells on mice bearing advanced renal cell carcinoma, more long-term survivors were produced than by treatment with any of these agents alone or in other combinations. ²⁶ Wadler and Schwartz²⁷ have re-

viewed an extensive literature dealing with the synergistic use of IFN as a modulating agent when used with cytotoxic agents in human malignancies.

We previously demonstrated that IFN- α is effective against colorectal tumor cell metastases to the liver in nude mice when used in combination with 5-fluorouracil (5-FU). This treatment was initiated 3 days after tumor cells were injected into the spleen. In other studies from our laboratory, Lee et al. demonstrated that IFN- α was also effective when used in neoadjuvant therapy before the initiation of chemotherapy and the removal of the tumor-bearing organ.

We now report a comparison of the *in vivo* antimetastatic effects of using IL-2 versus IFN- α in neoadjuvant therapy. When mice were treated with IL-2 for 1, 2 and 3 weeks after tumor cell injections, but before splenectomy and starting chemotherapy with 5-FU+IFN- α , the results showed that the effect of IL-2 was equal to IFN- α in inhibiting both liver and lung metastases at 2 and 3 weeks. At 1 week, the effect of IL-2 was superior to IFN- α against both liver and lung metastases. Thus, the effects of IL-2 can be expressed earlier and it appears to be a more potent immunomodulator than IFN- α .

Materials and methods

Athymic nude female mice were purchased from Harlan Sprague-Dawley (Indianapolis, IN). All mice were housed and maintained under specific pathogen-free conditions in the Nude Mouse Facility of the Mercy Cancer Center. Six week old mice were injected intrasplenically (i.s.) with tumor cells $(1.5 \times 10^6 \text{ cells in } 0.050 \text{ ml})$ by the technique described by Kozlowski *et al.*³⁰ The use of the LoVo cell line has been described previously. ^{28,29}

Recombinant IFN-2 α (Roferon A) and recombinant human rIL-2 were obtained as gifts from Roche Laboratories (Hoffman-La Roche, Nutley, NJ). Each vial of IFN- α contained 18 \times 10⁶ IU, with a specific activity of 2 \times 10⁸ IU/mg protein. Sterile water was used to reconstitute the contents of each vial. IFN- α was given s.c. at a dose of 3 \times 10⁵ units/injection in 0.2 ml. Each vial of rIL-2 containing 1 \times 10⁶ IU was reconstituted with 1.0 ml of sterile saline. Mice were injected i.p. with 5 \times 10⁴ units in 0.050 ml. 5-FU was given i.p. on the basis of 80 mg/kg.

Experiments were started on Fridays when mice were injected i.s. with LoVo cells while under methoxyflurane anesthesia. Splenectomies were performed on three groups, 1, 2 and 3 weeks later.

IL-2 or IFN-α was given every other day (except weekends) during the interval between intrasplenic injection and splenectomy. Thus, there were two, five and eight injections of IL-2 or IFN-α in the 1, 2 and 3 week splenectomy groups of mice, respectively. Three days after splenectomy, all mice were started on the combined 5-FU+IFN schedule which has been described earlier. Briefly, this consisted of 5-FU on Mondays and IFN daily. This schedule was repeated for 4 weeks. Mice were sacrificed 8 weeks after receiving the intrasplenic injections of tumor cells. Histological sections of livers and lungs were studied for the presence of metastases.

Results

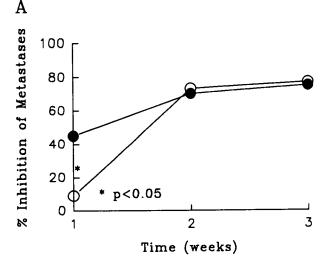
We showed previously that a treatment schedule consisting of 5-FU (once a week) and IFN- α (daily) for four successive weeks following i.s. injection of LoVo cells resulted in significant inhibition of liver metastases. We have now explored the use of neoadjuvant therapy which was combined with splenectomies and the regular 5-FU+IFN- α treatment. Splenectomies were performed 1, 2 and 3 weeks after i.s. injections. The 5-FU+IFN- α schedule started 3 days after splenectomy. During the interval between i.s. injection and splenectomy, IFN- α or IL-2 was given as neoadjuvant therapy.

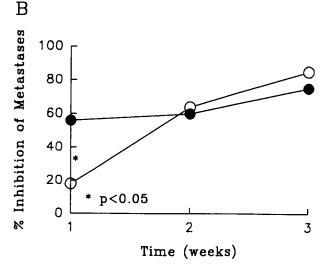
The data in Table 1 shows a comparison of the results obtained when IFN- α and IL-2 were tested separately as neoadjuvants in combination with splenectomy and the combined 5-FU+IFN- α treatment. Both IFN- α and IL-2 are more effective at 2 and 3 weeks in inhibiting liver and lung metastases than in the control series (which had the same treatment except for the neoadjuvant drug). In fact, the effects of IFN- α and IL-2 parallel each other at the 2 and 3 weeks. However, a difference between IFN- α and IL-2 is noted for both liver and lung at 1 week, and this difference is significant at the p < 0.05 level. This is evident in Figure 1 which plots the percentage inhibition of metastases for both liver and lung at the three time points.

Discussion

This study was undertaken to examine the potential of IL-2 to be used as a neoadjuvant in place of IFN- α in a treatment regimen against hepatic metastases consisting of combined 5-FU+IFN- α . We had demonstrated previously that IFN- α was able to po-

Table 1. The effect of IFN- α and IL-2 in neoadjuvant therapy before splenectomy and treatment with combined 5-FU + IFN- α on liver and lung metastases


	Incidence of metastasis ^a	
	liver	lung
Controls		
Spl. 1 wk + 5-FU + IFN- α	16/24	10/24
Spl. 2 wk + 5-FU + IFN-α	16/24	12/24
Spl. 3 wk + 5-FU + IFN- α	18/22	18/22
IFN-α		
Pre-treat 1 wk IFN- α , Spl., +5-FU + IFN- α	20/22	18/22
Pre-treat 2 wk IFN- α , Spl., +5-FU + IFN- α	6/22	8/22
Pre-treat 3 wk IFN- α , Spl., +5-FU + IFN- α	6/26	4/26
IL-2		
Pre-treat 1 wk IL-2, Spl., +5-FU + IFN- α	10/18	8/18
Pre-treat 2 wk IL-2, Spl., +5-FU + IFN- α	6/20	8/20
Pre-treat 3 wk IL-2, Spl., +5-FU + IFN-α	4/16	4/16


^aIncidence = no. of mice with metastasis/no. of mice injected.

tentiate the effects of 5-FU+IFN- α when used as a neoadjuvant before initiating therapy. ²⁹ The data in Tables 1 and 2 and Figure 1 show (i) IL-2, like IFN- α , is able to potentiate the combination of 5- FU+IFN- α to inhibit liver and lung metastases at the 2 and 3 week levels, (ii) there is no inhibitory activity of

Table 2. Percent inhibition of liver and lung metastases by IFN- α and IL-2 in neoadjuvant therapy

	Liver (%)	Lung (%)	
Controls			
Spl. 1 wk + 5-FU + IFN- α	33	58	
Spl. 2 wk + 5-FU + IFN-α	33	50	
Spl. 3 wk + 5-FU + IFN-α	18	18	
IFN-α			
Pre-treat 1 wk IFN-α, Spl.,	9	18	
+5-FU + IFN-α			
Pre-treat 2 wk IFN-α, Spl.,	73	64	
+5-FU + IFN-α			
Pre-treat 3 wk IFN-α, Spl.,	77	85	
+5-FU + IFN-α			
IL-2			
Pre-treat 1 wk IL-2, Spl.,	44	56	
+5-FU + IFN-α			
Pre-treat 2 wk IL-2, Spl.,	70	60	
+5-FU + IFN-α			
Pre-treat 3 wk IL-2, Spl.,	75	75	
+5-FU + IFN-α			

Figure 1. Percentage inhibition of (A) liver and (B) lung metastases by IL-2 (\bullet) and IFN- α (\bigcirc) when used as neoadjuvants for 1, 2 and 3 weeks prior to splenectomy, and combined treatment with 5-FU+IFN.

IFN- α at 1 week in either liver or lung series, and (iii) IL-2 shows inhibitory activity at 1 week and the difference in effect between IL-2 and IFN- α is significant (p < 0.05). It appears that IL-2 is a more potent immunomodulatory agent than IFN- α since (i) the effect of IL-2 is evident at 1 week and not seen for IFN- α , and (ii) this is brought about by only two doses of IL-2, whereas IFN- α needs five doses to show an effect at the second week.

A variety of responses have been reported following the systemic administration of IL-2 to nude mice: the induction of specific T helper cells, cytotoxic cells and autoantibody production. ^{31–33} Rosenberg *et al.* ³⁴ have shown that using only high doses of IL-2 in mice mediated the regression of established

lung and liver metastases and other subcutaneous tumor implants. In another study, they found that the effect of high dose IL-2 was absent in mice immunocompromised by 500 rad total body irradiation, or made T cell deficient by adult thymectomy and lethal body irradiation followed by reconstitution with T cell depleted bone marrow and spleen cells.35 This suggested that the action of IL-2 was mediated by a component of the host, rather than exerting a direct effect on the tumor. Our experiments are not as complex, but nonetheless are similar in that T cell deficient mice were used. We have also delivered IL-2 via the i.p. route in low, sustained concentrations which have been noted to favor the generation of high levels of endogenous lymphocytes with LAK activity. 36 Further studies are needed to determine whether host-generated, cellular mediators of IL-2-induced inhibition of metastases are responsible for the effects described here.

Acknowledgments

The authors are grateful to the following individuals for skilled technical assistance which made this work possible: Jerry Glass, Marilyn Cost, Helen Fedorka, and Kurt Blanock. They also thank Albert Marrangoni, MD, Director of the Surgical Research Laboratory of the Department of Surgery, for support in carrying out this project.

References

- Reizenstein P, Mathe' G, Vriz N, et al. Nonspecific immunomodulators in oncology and hematology. In: Oldham RK, ed. Principles of cancer biotherapy. New York: Raven Press 1987: 163–94.
- Goldstein D, Laszlo J. Interferon therapy in cancer: from imaginon to interferon. Cancer Res 1986; 46: 4315–29.
- Balkwill F, Watling D, Taylor-Papadimitriou J. Inhibition by lymphoblastoid interferon of growth of cells derived from the human breast. *Int J Cancer* 1978; 22: 258–65.
- Balkwill FR, Moodie EM, Freedman V, et al. Human interferon inhibits the growth of established human breast tumours in the nude mouse. Int J Cancer 1982; 30: 231-5.
- Brunda MJ, Bellantoni D, Sulich V. In vivo anti-tumor activity of combinations of interferon alpha and interleukin-2 in a murine model. Correlation of efficacy with the induction of cytotoxic cells resembling natural killer cells. Int J Cancer 1987; 40: 365-71.
- Gresser I, Maury C, Carnaud C, et al. Anti-tumor effects of interferon in mice injected with interferon-sensitive and interferon-resistant Friend erythroleukemia cells. VIII. Role of the immune system in the inhibition of visceral metastases. Int J Cancer 1990; 46: 468–74.
- 7. Hicks NJ, Morris AG, Burke DC. Partial reversion of the

- transformed phenotype of murine sarcoma virus-transformed cells in the presence of interferon: a possible mechanism for the antitumour effect of interferon. *J Cell Sci* 1981; **49**: 225–36.
- Heron I, Hokland M, Berg K. Enhanced expression of β-2-microglobulin and HLA antigens on human lymphoid cells by interferon. Proc Natl Acad Sci USA 75: 6215–9.
- Aguet M, Vignaux F, Fridman WH, et al. Enhancement of Fc receptor expression in interferon-treated mice. Eur J Immunol 1981; 11: 926–30.
- 10. van den Berg HW, Leahey WJ, Lynch M, et al. Recombinant human interferon alpha increases oestrogen receptor expression in human breast cancer cells (ZR-75-1) and sensitizes them to the anti-proliferative effects of tamoxifen. Br J Cancer 1987; 55: 255-7.
- Wan YJ, Orrison BM, Lieberman R, et al. Induction of major histocompatibility class I antigens by interferons in undifferentiated F9 cells. J Cell Physiol 1987; 130: 276– 83.
- Paulnock DM, Borden EC. Modulation of immune functions by interferons. In: Reif AE and Mitchell MS, eds. *Immunity to cancer*. New York: Academic Press 1985: 545–59.
- 13. Djeu JY, Heinbaugh JA, Holden HT, et al. Augmentation of mouse natural killer cell activity by interferon and interferon inducers. J Immunol 122: 175–81.
- Brunda MJ, Rosenbaum D. Modulation of murine natural killer cell activity in vitro and in vivo by recombinant human interferons. Cancer Res 1984; 44: 597–601.
- Herberman RB, Ortaldo JR, Mantovani A, et al. Effect of human recombinant interferon on cytotoxic activity of natural killer (NK) cells and monocytes. Cell Immunol 1982; 67: 160–7.
- Mule JJ, Shu S, Rosenberg SA. The anti-tumor efficacy of lymphokine-activated killer cells and recombinant interleukin 2 in vivo. J Immunol 1985; 135: 646–52.
- Mule JJ, Ettinghausen SE, Spiess PJ. Antitumor efficacy of lymphokine-activated killer cells and recombinant interleukin-2 in vivo: survival benefit and mechanisms of tumor escape in mice undergoing immunotherapy. Cancer Res 1986; 46: 676–83.
- 18. Kolitz JE, Mertelsmann R. The immunotherapy of human cancer with interleukin 2: present status and future directions. *Cancer Invest* 1991; **9**: 529–42.
- Rosenberg SA, Mule JJ, Spiess PJ, et al. Regression of established pulmonary metastases and subcutaneous tumor mediated by the systemic administration of high dose recombinant interleukin-2. J Exp Med 1985; 161: 1169–88.
- Lafreniere R, Rosenberg SA. Successful immunotherapy of murine experimental hepatic metastases with lymphokine activated killer cells and recombinant interleukin-2. *Cancer Res* 1985; 45: 3735-41.
- Cameron RB, McIntosh JK, Rosenberg SA. Synergistic antitumor effects of combination immunotherapy with recombinant interleukin-2 and a recombinant hybrid αinterferon in the treatment of established murine hepatic metastases. Cancer Res 1988; 48: 5810–7.
- 22. Iigo M, Sakurai M, Tamura T, et al. In vivo antitumor activity of multiple injections of recombinant interleukin 2, alone and in combination with three different types of recombinant interferon, on various syngeneic murine tumors. Cancer Res 1988; 48: 260–4.
- 23. Brunda MJ, Bellantoni D, Sulich V. In vivo anti-tumor

- activity of combinations of interferon alpha and interleukin-2 in a murine model. Correlation of efficacy with the induction of cytotoxic cells resembling natural killer cells. *Int J Cancer* 1987; **40**: 365–71.
- Papa MZ, Yang JC, Vetto JT, et al. Combined effects of chemotherapy and interleukin 2 in the therapy of mice with advanced pulmonary tumors. Cancer Res 1988; 48: 122-9.
- 25. Kedar E, Aziz RB, Epstein E, et al. Chemotherapy of murine tumors using interleukin-2 (IL-2) and cyclophosphamide: IL-2 can facilitate or inhibit tumor growth depending on the sequence of treatment and the tumor type. Cancer Immunol Immunother 1989; 29: 74–8.
- Gautam SC, Chikkala NF, Ganapathi R, et al. Combination therapy with adriamycin and interleukin-2 augments immunity against murine renal cell carcinoma. Cancer Res 1991; 51: 6133-7.
- Wadler S, Schwartz EL. Antineoplastic activity of the combination of interferon and cytotoxic agents against experimental and human malignancies: a review. *Cancer Res* 1990; 50: 3473–86.
- McBee P, Petraiuolo W, Katoh A. Inhibition of liver metastases in nude mice by the combined action of 5-fluorouracil and interferon. *Anti-Cancer Drugs* 1990; 1: 165–70.
- Lee M, Price D, Specht S, et al. Interferon modulation of 5-fluorouracil: use in neoadjuvant therapy inhibits experimental liver metastases in nude mice. Anti-Cancer Drugs 1992; 3: 413–8.
- Kozlowski JM, Fidler IJ, Campbell D, et al. Metastatic behavior of human tumor cell lines grown in the nude mouse. Cancer Res 1984; 44: 3522-9.

- 31. Stotter H, Rude E, Wagner H. T cell factor (interleukin-2) allows in vivo induction of T helper cells against heterologous erythrocytes in athymic (nu/nu) mice. *Eur J Immunol* 1980; **10**: 719–22.
- Wagner H, Hardt C, Heeg K, et al. T-cell derived helper factor allows in vivo induction of cytotoxic T cells in nu/nu mice. Nature 1980; 284: 278–80.
- Reimann J, Diamantstein T. Interleukin-2 allows the in vivo induction of anti-erythrocyte autoantibody production in nude mice associated with the injection of rat erythrocytes. Clin Exp Immunol 1981; 43: 641-4.
- 34. Rosenberg SA, Mule JJ, Spiess PJ, et al. Regression of established pulmonary metastases and subcutaneous tumor mediated by the systemic administration of high-dose recombinant interleukin-2. J Exp Med 1985; 61: 1169–88.
- Mule JJ, Yang J, Shu S, et al. The anti-tumor efficacy of lymphokine-activated killer cells and recombinant interleukin 2 in vivo: direct correlation between reduction of established metastases and cytolytic activity of lymphokine-activated killer cells. J Immunol 1986; 136: 3899– 909.
- Ettinghausen SE, Rosenberg SA. Immunotherapy of murine sarcomas using lymphokine-activated killer cells: optimization of the schedule and route of administration of recombinant interleukin-2. Cancer Res 1986; 46: 2784–92.

(Received 17 January 1994; accepted 24 January 1994)